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Abstract

In Coleman’s wormhole scenario it is the trace anomaly on S, that con-
trols the behavior of fundamental coupling constants, particle masses,
mixing angles, etc. We indicate how low energy phenomenology may be
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Considerable excitement has been generated recently over the idea, due to Cole-
man, that wormholes in Euclidean spacetime can lead to a relaxation of the cos-
mological constant [1]. Coleman’s scenario further suggests, as applied recently by
Grinstein and Wise to a real scalar field [2], how the fundamental particle masses
(and presumeably gauge couplings, mixing angles, etc.) might be influenced, possibly
even determined, by wormhole physics. In this letter we remark that the essential
discriminant which determines whether particle masses are pushed toward zero or
pulled toward the Planck (or wormhole) scale is just the gravitational contribution
to the trace anomaly (applied to Ss). The work of ref.[2} is a special case which indi-
cates that a single, real (non—conformally coupled) scalar field is pushed toward zero
mass; we shall see that the same result holds for spin—-2 while the opposite conclusion

obtains for spin-1/2 through spin-3/2.

More generally, however, wormholes supply us with a powerful new set of principles
which may dictate the full set of low energy parameters. The essential new ingredients
are that: (1) at some very high energy scale, M, (the presumed wormhole scale), the
fundamental coupling constants, A;( M), are free parameters since they have a general
dependence upon wormhole parameters, a;, which are themselves free parameters;’
(2) the effective potential for the parameters is given by the effective action on S4. 54
describes the large virtual baby universes in Coleman’s scenario which generate the
effective potential in which the cosmological constant vanishes and drives the effects
described in this paper. The interesting novelty here is that the effective potential
on a large S, universe of radius = involves the low energy values of the parameters,
Ai(r~1), of the theory, while the high energy values, A;(M) are the free parameters;
these are connected by the renormalization-group equations. Nontrivial solutions to
the extremal conditions will generally emerge, and one has the possibility that the
observed low energy parameters will be completely determined. We will give examples

of how this works for gauge coupling constants and for the masses of a standard model

1The dependence upon the a;—parameters for fundamental fields would be expected to be essen-
tially universal, dependent only upon the spins and other quantum numbers, and linear in the a; in
the dilute gas approximation.
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quarks and leptons.

First we wish to demonstrate the connection between the trace anomaly and the
effective potential for masses of elementary fields. With general matter fields, ¥;, we

may consider the effective action as a series expansion in the background curvature:

T = / d*z\/G {A — (16xGN) R+ : Lo(1,9) : +BRuwanB*™ + 7RuW B + 6B + ...}

(1)
Here we include all terms to dimension—4 and define : Lp : to have vanishing vacuum
matrix element to all orders in a loop expansion (i.e., no contribution to the cosmo-
logical constant; this is to be iml;lemented at the presumed absolute minimum of the
potential in the case of spontaneous symmetry breaking). Neglecting terms of order
(Gn)P implies that 3, v, and § are independent of fields, but are generally functions of
the mass parameters and coupling constants appearing in Lo as a consequence of dia-
grams with internal 1; lines that tie onto external gravitons. Note that this expression
should be viewed as an effective action at some scale pu; wormhole effects will drive us
to consider the far infra-red limit of the theory, so the 9; should be viewed as fields
that are fundamental on very low energy scales, hence a pointlike field description of
particles like the proton and pion should also be valid in this limit.?

The dependence in 3, v, and § upon the masses of elementary particles can be
determined in the leading-log approximation by a simple argument, which parallels
the derivation of the Callan-Symanzik equation for the scaling behavior of 1PI Green'’s
functions in perturbation theory. We suppose in the tree approximation that 3,~, and
§ are just constants (perhaps vanishing, but otherwise arbitrary) with no dependence
upon the parameters of Ly. The divergence of the scale-current, S, satisfies the
familiar Noether relationship:

oS, =Tk, (2)

2However, only fields that are pointlike on the wormhole scale, M, will have masses that may be
viewed as free parameters; we are therefore confused about the conclusion of ref.[3] that the pion
will be driven to zero mass since at the wormhole scale it is composed of quarks which are naively
driven to large masses.
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Let us initially assume that there are no dimensionful parameters contained in
Lo. In this case it is well known that, although the trace of the stress—tensor can
be chosen to be zero in tree—approximation (scalars must be conformally coupled to
gravity as in 2{¢*R, ¢ = 1/6) there will nonetheless be a nonzero T} commencing at

order k. This represents an explicit breakdown of scale-invariance by eq.(2).

Eq.(2) is an operator equation which must hold for all of it’s matrix elements. The
breaking of scale-invariance in an apparently invariant theory at tree approximation
is a consequence of the necessity of introducing a mass parameter, M, to regulate
the divergences of the loop expansion of operator matrix elements. Scale-invariance
is thus explicitly broken by the regularization, and the trace anomaly is the resid-
ual effect of this. Renormalization trades the explicit cut—off dependence, M, for a
renormalization—point mass—scale, p. The renormalized matrix elements of T,,, gen-
erally contain implicit 4 dependence, and the theory will have broken scale invariance

and a nonzero trace.

Now, under scale transformations we have ¥;(z) — A%;(Az#) where d; is the
mass—dimension of v;. Scale transformations are induced on field operators by a

generator, D = [ d%z Sy, as:
i - €PN g DI (D ] = (ds + 2B, )b (3)

where d; is the canonical mass—dimension of ;. Lo has no—dimensionful parameters,

hence all of its terms are d = 4 and under commutation with D we have:

d
dln )

i[D, Lo(=)] = Lo(A%9:(Aet))| = (4+2#8,)Lo(2) = Bu(2*Lo(z))  (4)

A=1

hence, the action is invariant under the transformation (in the absence of surface
terms). The divergence of the scale current is given by the variation of the action

with respect to a local transformation:

B — GrS 8 4
Ty_ =0 S”——m/d :DLQ(Q}) (5)
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and eq.(5) implies that this is the variation of a vanishing surface term, hence the
divergence of S* is zero in the tree-approximation. However, let us now consider
the renormalized operator Lo(z) in eq.(4) which depends upon the renormalization

mass—scale p. p is held fixed under scale transformations and we thus have:

5 3
B 4 = — .
Ou 51n M(z) / Folo= gyl (6)

This equation simply expresses the fact that the trace anomaly arises due to the

presence of p in the renormalized amplitudes.

Let us see how this works in a well-known example. Consider a pure Yang-Mills
theory with coupling constant e and with the vector potential scaled so that all explicit

e—dependence in G, is removed. The Lagrangian reads:
L=—LTrG.o™ (7)
T 2e? S

Under renormalization (modulo some subtleties which are irrelevant here) the oper-
ator L goes to itself with e replaced by the usual running coupling constant defined

at a scale g, i.e., e has become a function of p?/u?. Thus we have:

a 1 Jde
L(:B) = 8—3

T Tt G, G*

dlnp dlnpu

= By (8

where we use 8e/d1n u = B(e). The last expression is the usual trace anomaly for a
pure Yang-Mills theory.

In external gravitational fields we have divergent loops of the matrix elements of
T, which lead to the gravitational contribution to the trace anomaly. Following [4,5]

these may be written in the form:

(1) = 2881%2 {B'RuanB*™ + 4Ry B* + §'R* + ...} (9)
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(we shall drop here a term of the form D?R which plays no role in our present
discussion as it vanishes on spaces of constant curvature such as S;). We give in
Table I the values of the coefficients in theories of various spins up to spin-2 for

massless fields and in Table II the results for massive fields [4].

We can see how the trace anomaly is related to the dependence of the coeflicients,
B, 7, and &, in eq.(1) upon the masses of other fields in the theory. We now suppose
that our theory contains one mass parameter in the defining Lagrangian, Lo. Consider
the limit in which the single mass parameter m is the largest physical scale in the
theory (large compared to the external momenta of the matrix elements of Lo). Since
B, v, and § are coefficients of dimension—4 terms, they are dimensionless themselves
and must have, in the limit, a dependence upon m? through the ratio m?/u®. Hence,

for these terms we have:

d a
Olnp T 8lnm (10)

Using this result and applying eq.(6) and eq.(10) to compute the trace of the stress

tensor gives:

T =

u

~Blam [Lo(z)] + terms of O(m?) (11)

In fact, we may take the m — 0 limit of the rhs of eq.(11) to obtain the trace anomaly
in the theory with no mass parameter. Therefore, we may identify the rhs of eq.(9)
with eq.(11), and the associated parameters as listed in Table I. Thus, integrating
eq.(11) with repect to Inm gives the effective Lagrangian:

1

Lo = =5t [(Bo + B'In(m/m) Ruan B> + (20 + 7' In(m/ ) R B

+ (60 + &' ln(m/p.))Rz] + invariant terms and higher order in m?. (12)

Here Bo, Yo, and 8 are arbitrary constants, independent of m, and we see that the

m~dependence is determined by the coefficients in the trace anomaly.

We now project the action of eq.(1) onto the Euclidean 4-sphere, S, following
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ref.[2]. We find:
3 8ric
T(S,) = [—W -3 ] (13)
where:
c =240 + 36 + 1446 = co + c1 In(m/p) (14)

The values of ¢; which obtain for the different spins are given by the trace anomalies

and are also quoted in Table I.
The terms of eq.(14) should be viewed as the negative of the potential energy of

the system, ¢.e., the probability distribution in Coleman’s a—parameters is given by:

2
Z = exp [exp (SG:;,A + 8—;—(% +¢ ln(m/p))] (15)
If the mass term appearing in the argument of the logarithm is a general function of
the a-parameters then the most probable value of this parameter is determined by
letting m — oo for positive ¢; and m — 0 for negative ¢;. An inspection of Table
I indicates that we reproduce the result of ref.[2], namely that a real, minimally-
coupled scalar field will tend toward zero mass. For spin—1/2 through spin-3/2 the
opposite conclusion holds, while gravity behaves again like a real scalar. These are
naive conclusions, however, because the entire interaction structure of the theory is
relevant in making the connection between the mass defined at the wormhole scale
and the physical value defined at low energies. We shall now examine this aspect in

greater detail.

First, it is instructive to consider the limiting case of exactly massless, conformally
coupled fields (e.g., massless spin—1/2 or spin-1 particles). Consider the analogues
to the terms of eq.(12) which must now involve a seeming infra-red divergence as
m — 0. These cannot now be expressed as an integral over a local Lagrangian density,
nevertheless their form, AT, can be easily characterized. Since we are interested

primarily in large spheres with radius » we consider AT as a function of g, = g,
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where §,, corresponds to the sphere of unit radius. Then

AT(g = r’g,p) = F(rp, §), (16)

that is, conformal invariance is broken again, only by renormalization effects, and
therefore AT' depends on 7 only through the combination rx, where y is again the

renormalization-point.

For example, at 1-loop order the contribution to AT is proportional to (see Birrell
and Davies [5]):
Tr (ln(r;l,)2 Gr(z, :c')) (17)

where the nonlocal propagator Gr is evaluated with the background metric §g. The
calculation of the trace of a constant (1 - In(rp)) gives the r-dependent term in the
action to be (872¢;/3)In(rp). Now, the radius r of the sphere plays the role of an
infrared cut-off and therefore this result holds as well for massive particles provided
their mass is much smaller than 1/r. Since we are interested in considering the limit
of very large radius (i.e., r* ~ 1/GyA, with A — 0), eventually we will need to
consider the opposite limit m > r~1, so the mass itself regulates the infrared. The
effect should be to change In(rp) into In(p/m). Hearteningly this is just what was

found above.

Moreover, in a theory with massive and truly massless particles, i.e., those for
which a symmetry, such as chiral invariance, prevents a mass, the small A corrections
to the term of order 1/G% A in I are dominated by In A contributions due to massless
particles. If there are wormhole a~parameters that are left undetermined from the
leading term in I', then one should consider the effects of massless particles before
those of massive ones. This has the possible outcome of fixing dimensionless coupling

constants. We now consider briefly how this may occur.

Consider a theory of massless interacting particles with one dimensionless coupling

constant e. The effective action on the sphere will have a contribution

AT = 2 f(ru) + -+ (18)
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where the ellipses stand for terms that are independent of r and f(rp) is determined
through the renormalization-group equation
df

by =7 (19)

At 1-loop ¥ = c;, and there is no new a-parameter dependence in A'. But beyond
1-loop « is some function of e, v = ¥(e) and f(rM) = f(1)+ fM d“‘y(e(,u)) where we
have introduced the running coupling constant &(u) satisfying p%& 4. = B(¢) and &(M) =

eo at the wormhole scale M. For small but nonvanishing cosmological constant, i.e.,
large fixed radius, we must minimize f(rM) with respect to eo, holding A and M

fixed. It is easy to look for an extremum. Writing

fam) = 1 + [ ZEse) (20)

we have the extremum condition

1(ea) _ 2(E(r™)) OE(r™)
Ale) B 0o

= 70 )[7(eo) (&) (22)

If 3 > 0, nontrivial solutions always exist for v of the form given in Fig. 1. Only

0
= a—eof(Mr) (21)

for 4 shown in Fig. la is the extremum a local minimum. In either case &(1/r) — 0
as r — oo and therefore e; is a solution to y(eg) = ¥(0) = ¢;. Unfortunately, it is
generally inconsistent to solve v(eo) = ¥(0) perturbatively. Moreover, graviton loops
will presumably add a term to the left hand side of eq.(19) proportional to f. To be
fair, this is only a toy example?, but it raises the possibility that Coleman’s “big fix”
may eventually yield the value of the fine structure constant!

How do wormhole effects influence the masses of standard model quarks and lep-

tons? First we observe in Table II that, naively, fermions will be pulled to large

3In a realistic theory, such as QED with an electron mass m, one expects to replace &(r~!) by
é(m) in eq. (22), but we have not presently analyzed this case.
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masses. This raises a puzzle in the context of the standard model in which fermion
masses are given by a coupling constant (e.g.the Higgs—Yukawa coupling) times the
VEV which breaks the electroweak symmetry. In particular, there are well known
bounds, such as the renormalization-group bounds relevant here [6, 7], which provide
upper limits on fermion masses in the standard model, and we must inquire as to how

the wormhole scenario either respects or modifies these limits.

We consider a single standard model “top” quark and assume presently that the
VEV, v, of the single Higgs is constant and that the strong coupling constant has the
usual running; then the physical t—quark mass is m, = g;(m;) - v.*. We neglect the
electroweak couplings g; and g, presently. The argument of the log in the potential
of eq.(13) is then gv/p. Thus, we may write the renormalization-group equation for

c in the form:

de dc fc dc c
dngp - olng + Be(8e» gs)a—g: + ﬁa(ya,gt)a—gs = 393 (23)

where: 2

_ 9 (9, 2\. _ 93
Be(g:, 93) = T6n2 (5.% - 893) i Palgs,9e) = —boge—3

to the order of interest. Using these beta—functions one can in principle integrate

(24)

eq.(23) and obtain an explicit expression of the form:

C1
c =
3273

F(ge(m), gs(m); g:(M), gs(M)) (25)
For example, if we neglect the running of g3 we obtain:

_= n g2 (M)(9g}(m) — 1643)
= g : g%(m)(9g%(M) — 1643) (26)

The condition that ¢; > 0 implies that we must choose g(M) to maximize F'. Here

we identify M with the wormhole scale and m with a low energy scale of order m;.

4At present we give no argument to indicate how wormholes might fix the electroweak scale, so
the assumption of fixed v is a strong one, but perhaps not unreasonable given that the mechanism
fixing v may be independent of that for g,
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However, we readily see from eq.(23) that F must be given equivalently by:
F(ge(m), gs(m); g«(M), gs(M)) = In(m/M) (27)

The condition that ¢; > 0 implies that In{(m /M) must be made as large as possible by
suitable choice of g:(M). Stated differently, we are holding v fixed, so we must find
that initial value (at the wormhole scale) of g; such that the running time down to the
physical mass, g;(m;) is minimized (thus we have a kind of “Fermat’s Principle” for
the Higgs—Yukawa couplings). It is seen from the renormalization—group evolution
of Higgs—Yukawa couplings (7] that, for arbitrarily large initial values of g;(M), we
are driven to universal low-energy values. The running time is minimized when the
initial g;(M) is arbitrarily large and the running terminates on the largest value of
my. Therefore, this predicts that the top quark is driven toward the renormalization—
group fixed point value of g(m), which is also the upper limit of the running [6, 7].
This is essentially the “triviality bound” of the electroweak theory when we demand
that the theory be point-like up to the wormhole scale. Thus, while the fermion
is pulled to a large value, it is only pulled to the largest value consistent with the
constraint that the underlying theory have no phase transition between its low energy
scale ~ v and the wormhole scale, ~ Mp. For a fourth generation this corresponds
to a quark mass scale of order 220 Gev and the charged lepton of ~ 60 to ~ 110 GeV
[7]. However, things can change dramatically when we go beyond the leading order.

To higher order in the loop expansion the right hand side of eq. (23) should be
replaced by 7, a function of the coupling constants g; and g3. Neglecting the running

of g3 we then obtain
ge(me) ¥
=c(M) + dg:— 28
m) = o(M) + [ dg (28)

It is straightforward to find a general extremum condition with respect to go = g:(M):

Ge 1 ¥(ge(m.)) B
890 Bi(g0) [1 — B(3:(m2))/Fe(me) 7(g0)

This equation is to be solved for go holding v = m,/g:(m:) fixed. For example, for

0=

(29)
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the functions v(g) and v(g)/(1 — B:(g9)/g) depicted in Fig. 2, one may always find a
solution. In the limit of the 1-loop approximation we recover the preceding result,
but this general behavior may yield a range of other interesting solutions. To carry
out a complete analysis one requires the two—loop radiative corrections to the trace

anomaly.

In conclusion, we have extended the program of ref.[1] and [2] further in the
direction of making contact with the low energy phenomenology. We have made no
progress here in understanding the origin of the small electroweak scale relative to
the wormhole scale. In fact, though scalars by themselves become light as in [2], the
standard model Higgs will have larger opposing effects coming from fermions e.g.,
the Inmy terms contain Inv ~ lnmpyg through the Higgs—Yukawa couplings, with
coefficients of opposite sign to the pure scalar case. The effect of gauge bosons is
dominant and these also act to change the sign of ¢;; the remedy may be to choose
very large values of £ at the wormhole scale or to invoke new interactions so that the
Higgs is composite, as in technicolor. We should further mention that considerations
as in [8] would be, if applicable, disastrous for the present scenario. We will return

to these issues in a more extensive analysis elsewhere.

We thank W. Bardeen, M. Duff, and L. Susskind for useful discussions and com-

ments.
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Table I. Coeflicients in trace-anomaly from Christensen and Duff for mass-
less fields of spin-0 though spin-2. Our notation differs from ref.[4] and
a; v = b—2a; § = d—b/3+ a/3, obtained
using the identity C, .C*** = R, R*** — 2(R, B*) + R?/3. Here
c1 = 24’ + 364" + 1446’ as defined in eq.(15). The spin—} case is Weyl
(multiply by 2 for Dirac). The spin-2 and spin-2 cases are valid only on
mass-shell.

the translation is ' =

spin || 2880723’ | 288072+’ 2880726’ 327%c
2
0 -1 1 | -90(¢—1) | 2 (126 —2)

1
2| - | - : :
1 13 —88 25 24
23 3 649 61
3/2 e -5 3 5

7 2 1434

2 —212 424 _nr_ —1u

Table II. Coefficients in trace-anomaly from Christensen and Duff for
massive fields of spin-0 though spin—2, as in Table I. For a massive Dirac

field multiply the spin—% result by 2. The spin—% and spin-2 cases are

strictly valid only on mass—shell.

spin || 2880x33' | 2880734’ 2880736’ 3213c,
2
° 1 -l L | -o0(e—3) | &-(2e -2y
1/2 —--47- -2 % %
1 12 —87 i 2
237 879 194
3/2 T N 2 15
2 —211 -1 421 —268 — 212 4u
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Figure Captions

Figure 1: Two possible forms of the function, 7, in eq.(19) for which
solutions to the extremum condition in eq.(22) exist. Only for v shown in

Fig. (a) is the extremum a local minimum.

Figure 2: Possible forms of the “beta—function,” 4 in eq.(28) and the
corresponding form of v/(1 — B:/g), for which a solution to the extremal
condition in eq.(29) exists. The solution yields the mass of the “top”-
quark.
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